z-logo
open-access-imgOpen Access
Aerodynamics of Flapping Wing at Low Reynolds Numbers: Force Measurement and Flow Visualization
Author(s) -
Abhijit Banerjee,
Saurav Kumar Ghosh,
Debopam Das
Publication year - 2011
Publication title -
isrn mechanical engineering
Language(s) - English
Resource type - Journals
eISSN - 2090-5130
pISSN - 2090-5122
DOI - 10.5402/2011/162687
Subject(s) - flapping , reynolds number , aerodynamics , flow visualization , lift (data mining) , aerodynamic force , mechanics , aerospace engineering , physics , computer science , flow (mathematics) , wing , engineering , turbulence , data mining
Flow field of a butterfly mimicking flapping model with plan form of various shapes and butterfly-shaped wings is studied. The nature of the unsteady flow and embedded vortical structures are obtained at chord cross-sectional plane of the scaled wings to understand the dynamics of insect flapping flight. Flow visualization and PIV experiments are carried out for the better understanding of the flow field. The model being studied has a single degree of freedom of flapping. The wing flexibility adds another degree to a certain extent introducing feathering effect in the kinematics. The mechanisms that produce high lift and considerable thrust during the flapping motion are identified. The effect of the Reynolds number on the flapping flight is studied by varying the wing size and the flapping frequency. Force measurements are carried out to study the variations of lift forces in the Reynolds number (Re) range of 3000 to 7000. Force experiments are conducted both at zero and finite forward velocity in a wind tunnel. Flow visualization as well as PIV measurement is conducted only at zero forward velocity in a stagnant water tank and in air, respectively. The aim here is to measure the aerodynamic lift force and visualize the flow field and notice the difference with different Reynolds number (Re), and flapping frequency (f), and advance ratios (=∞/2).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom