z-logo
open-access-imgOpen Access
Some Sequential Boundary Crossing Results for Geometric Brownian Motion and Their Applications in Financial Engineering
Author(s) -
Tristan Guillaume
Publication year - 2011
Publication title -
isrn applied mathematics
Language(s) - English
Resource type - Journals
eISSN - 2090-5572
pISSN - 2090-5564
DOI - 10.5402/2011/120253
Subject(s) - geometric brownian motion , piecewise , brownian motion , valuation (finance) , boundary (topology) , constant (computer programming) , mathematics , mathematical finance , mathematical analysis , mathematical economics , mathematical optimization , computer science , finance , economics , diffusion process , statistics , knowledge management , innovation diffusion , programming language
This paper provides new explicit results for some boundary crossing distributions in a multidimensional geometric Brownian motion framework when the boundary is a piecewise constant function of time. Among their various possible applications, they enable accurate and efficient analytical valuation of a large number of option contracts traded in the financial markets belonging to the classes of barrier and look-back options.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom