z-logo
open-access-imgOpen Access
An Adaptive Eigenshape Model.
Author(s) -
Adam Baumberg,
David Hogg
Publication year - 1995
Publication title -
citeseer x (the pennsylvania state university)
Language(s) - English
Resource type - Conference proceedings
DOI - 10.5244/c.9.9
Subject(s) - point distribution model , landmark , computer science , artificial intelligence , extension (predicate logic) , statistical model , point (geometry) , object (grammar) , active appearance model , computer vision , algorithm , image (mathematics) , mathematics , geometry , programming language
There has been a great deal of recent interest in statistical models of 2D landmark data for generating compact deformable models of a given object. This paper extends this work to a class of parametrised shapes where there are no landmarks available. A rigorous statistical framework for the eigenshape model is introduced, which is an extension to the conventional Linear Point Distribution Model. One of the problems associated with landmark free methods is that a large degree of variability in any shape descriptor may be due to the choice of parametrisation. An automated training method is described which utilises an iterative feedback method to overcome this problem. The result is an automatically generated compact linear shape model. The model has been successfully applied to a problem of tracking the outline of a walking pedestrian in real time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom