Global Deconvolutional Networks for Semantic Segmentation
Author(s) -
Vladimir Nekrasov,
Janghoon Ju,
Jaesik Choi
Publication year - 2016
Language(s) - English
Resource type - Conference proceedings
DOI - 10.5244/c.30.124
Subject(s) - computer science , artificial intelligence , upsampling , convolutional neural network , deconvolution , segmentation , pattern recognition (psychology) , image segmentation , pixel , pascal (unit) , context (archaeology) , classifier (uml) , computer vision , convolution (computer science) , artificial neural network , image (mathematics) , paleontology , algorithm , biology , programming language
Semantic image segmentation is a principal problem in computer vision, where the aim is to correctly classify each individual pixel of an image into a semantic label. Its widespread use in many areas, including medical imaging and autonomous driving, has fostered extensive research in recent years. Empirical improvements in tackling this task have primarily been motivated by successful exploitation of Convolutional Neural Networks (CNNs) pre-trained for image classification and object recognition. However, the pixel-wise labelling with CNNs has its own unique challenges: (1) an accurate deconvolution, or upsampling, of low-resolution output into a higher-resolution segmentation mask and (2) an inclusion of global information, or context, within locally extracted features. To address these issues, we propose a novel architecture to conduct the equivalent of the deconvolution operation globally and acquire dense predictions. We demonstrate that it leads to improved performance of state-of-the-art semantic segmentation models on the PASCAL VOC 2012 benchmark, reaching 74.0% mean IU accuracy on the test set.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom