Real-time Dense Visual Tracking under Large Lighting Variations
Author(s) -
Maxime Meilland,
Andrew I. Comport,
Patrick Rives
Publication year - 2011
Language(s) - English
Resource type - Conference proceedings
DOI - 10.5244/c.25.45
Subject(s) - artificial intelligence , computer vision , computer science , visual odometry , monocular , photometric stereo , tracking (education) , odometry , context (archaeology) , robot , image (mathematics) , mobile robot , pedagogy , psychology , paleontology , biology
This paper proposes a model for large illumination variations to improve direct 3D tracking techniques since they are highly prone to illumination changes. Within this context dense monocular and multi-camera tracking techniques are presented which each perform in real-time (45Hz). The proposed approach exploits the relative advantages of both model-based and visual odometry techniques for tracking. In the case of direct model-based tracking, photometric models are usually acquired under significantly greater lighting differences than those observed by the current camera view, however, model-based approaches avoid drift. Incremental visual odometry, on the other hand, has relatively less lighting variation but integrates drift. To solve this problem a hybrid approach is proposed to simultaneously minimise drift via a 3D model whilst using locally consistent illumination to correct large photometric differences. Direct 6 dof tracking is performed by an accurate method, which directly minimizes dense image measurements iteratively, using non-linear optimisation. A stereo technique for automatically acquiring the 3D photometric model has also been optimised for the purpose of this paper. Real experiments are shown on complex 3D scenes for a hand-held camera undergoing fast 3D movement and various illumination changes including daylight, artificial-lights, significant shadows, non-Lambertian reflections, occlusions and saturations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom