Feature Detection and Tracking with Constrained Local Models
Author(s) -
D. Cristinacce,
T.F. Cootes
Publication year - 2006
Publication title -
citeseer x (the pennsylvania state university)
Language(s) - English
Resource type - Conference proceedings
DOI - 10.5244/c.20.95
Subject(s) - computer science , feature (linguistics) , feature tracking , artificial intelligence , tracking (education) , computer vision , feature extraction , pattern recognition (psychology) , philosophy , linguistics , psychology , pedagogy
We present an efficient and robust model matching method which uses a joint shape and texture appearance model to generate a set of region template detectors. The model is fitted to an unseen image in an iterative manner by generating templates using the joint model and the current parameter estimates, correlating the templates with the target image to generate response images and optimising the shape parameters so as to maximise the sum of responses. The appearance model is similar to that used in the Active Appearance Model due to Cootes et al. However in our approach the appearance model is used to generate likely feature templates, instead of trying to approximate the image pixels directly. We show that when applied to human faces, our constrained local model (CLM) algorithm is more robust and more accurate than the original AAM search method, which relies on the image reconstruction error to update the model parameters. We demonstrate improved localisation accuracy on two publicly available face data sets and improved tracking on a challenging set of in-car face sequences.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom