z-logo
open-access-imgOpen Access
Classifying Surveillance Events from Attributes and Behaviour
Author(s) -
Paolo Remagnino,
Gareth Jones
Publication year - 2001
Publication title -
citeseer x (the pennsylvania state university)
Language(s) - English
Resource type - Conference proceedings
DOI - 10.5244/c.15.70
Subject(s) - computer science , classifier (uml) , hidden markov model , artificial intelligence , event (particle physics) , bayesian probability , machine learning , data mining , quantum mechanics , physics
In order to develop a high-level description of events unfolding in a typical surveillance scenario, each successfully tracked event must be classified into type and behaviour. In common with a number of approaches this paper employs a Bayesian classifier to determine type from event attribute such as height, width and velocity. The classifier, however, is extended to integrate all available evidence from the entire track. A not untypical Hidden Markov Model approach has been employed to model the common event behaviours typical of a car-park environment. Both techniques have been probabilistically integrated to generate accurate type and behaviour classifications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom