z-logo
open-access-imgOpen Access
The Challenge of Big Data in Public Helth: An Opportunity for Visual Analytics
Author(s) -
Kamran Sedig,
Oluwakemi Ola
Publication year - 2014
Publication title -
online journal of public health informatics
Language(s) - English
Resource type - Journals
ISSN - 1947-2579
DOI - 10.5210/ojphi.v5i3.4933
Subject(s) - big data , variety (cybernetics) , data science , computer science , analytics , visual analytics , cognition , work (physics) , cultural analytics , visualization , knowledge management , world wide web , artificial intelligence , psychology , the internet , data mining , engineering , semantic analytics , mechanical engineering , neuroscience , web modeling
Public health (PH) data can generally be characterized as big data. The efficient and effective use of this data determines the extent to which PH stakeholders can sufficiently address societal health concerns as they engage in a variety of work activities. As stakeholders interact with data, they engage in various cognitive activities such as analytical reasoning, decision-making, interpreting, and problem solving. Performing these activities with big data is a challenge for the unaided mind as stakeholders encounter obstacles relating to the data’s volume, variety, velocity, and veracity. Such being the case, computer-based information tools are needed to support PH stakeholders. Unfortunately, while existing computational tools are beneficial in addressing certain work activities, they fall short in supporting cognitive activities that involve working with large, heterogeneous, and complex bodies of data. This paper presents visual analytics (VA) tools, a nascent category of computational tools that integrate data analytics with interactive visualizations, to facilitate the performance of cognitive activities involving big data. Historically, PH has lagged behind other sectors in embracing new computational technology. In this paper, we discuss the role that VA tools can play in addressing the challenges presented by big data. In doing so, we demonstrate the potential benefit of incorporating VA tools into PH practice, in addition to highlighting the need for further systematic and focused research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom