z-logo
open-access-imgOpen Access
Design Choices for Automated Disease Surveillance in the Social Web
Author(s) -
Mark Abraham Magumba,
Peter Nabende,
Ernest Mwebaze
Publication year - 2018
Publication title -
online journal of public health informatics
Language(s) - English
Resource type - Journals
ISSN - 1947-2579
DOI - 10.5210/ojphi.v10i2.9312
Subject(s) - computer science , disease surveillance , data science , context (archaeology) , parsing , world wide web , web application , disease , knowledge management , medicine , artificial intelligence , paleontology , pathology , biology
The social web has emerged as a dominant information architecture accelerating technology innovation on an unprecedented scale. The utility of these developments to public health use cases like disease surveillance, information dissemination, outbreak prediction and so forth has been widely investigated and variously demonstrated in work spanning several published experimental studies and deployed systems. In this paper we provide an overview of automated disease surveillance efforts based on the social web characterized by their different high level design choices regarding functional aspects like user participation and language parsing approaches. We briefly discuss the technical rationale and practical implications of these different choices in addition to the key limitations associated with these systems within the context of operable disease surveillance. We hope this can offer some technical guidance to multi-disciplinary teams on how best to implement, interpret and evaluate disease surveillance programs based on the social web.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom