
Spatial and temporal variability in summer snow pack in Dronning Maud Land, Antarctica
Author(s) -
Timo Vihma,
OlliPekka Mattila,
Roberta Pirazzini,
Milla Johansson
Publication year - 2011
Publication title -
the cryosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.574
H-Index - 82
eISSN - 1994-0424
pISSN - 1994-0416
DOI - 10.5194/tc-5-187-2011
Subject(s) - snow , transect , spatial variability , atmospheric sciences , snow field , precipitation , environmental science , geology , firn , spatial ecology , climatology , diurnal cycle , snow line , snow cover , meteorology , geomorphology , oceanography , geography , ecology , statistics , mathematics , biology
To quantify the spatial and temporal variability in the snow pack, field measurements were carried out during four summers in Dronning Maud Land, Antarctica. Data from a 310-km-long transect revealed the largest horizontal gradients in snow density, temperature, and hardness in the escarpment region. On the local scale, day-to-day temporal variability dominated the standard deviation of snow temperature, while the diurnal cycle was of second significance, and horizontal variability on the scale of 0.4 to 10 m was least important. In the uppermost 0.2 m, the snow temperature was correlated with the air temperature over the previous 6–12 h, whereas at the depths of 0.3 to 0.5 m the most important time scale was 3 days. Cloud cover and radiative fluxes affected the snow temperature in the uppermost 0.30 m and the snow density in the uppermost 0.10 m. Both on the intra-pit and transect scales, the ratio of horizontal to temporal variability increased with depth. The horizontal standard deviation of snow density increased rapidly between the scales of 0.4 and 2 m, and more gradually from 10 to 100 m. Inter-annual variations in snow temperature and density were due to inter-annual differences in air temperature and the timing of the precipitation events