z-logo
open-access-imgOpen Access
Privacy Preserving Big Data publishing- A scalable K-anonymization approach using MapReduce
Author(s) -
Deepika Sharma,
Rohit Kumar
Publication year - 2018
Publication title -
international journal of computer applications
Language(s) - English
Resource type - Journals
ISSN - 0975-8887
DOI - 10.5120/ijca2018917705
Subject(s) - computer science , scalability , data anonymization , data publishing , big data , publishing , data science , world wide web , data mining , information privacy , database , internet privacy , political science , law
Networked data contain interconnected entities for which inferences are to be made. For example, web pages are interconnected by hyperlinks, research papers are associated by references, phone accounts are linked by calls, and conceivable terrorists are linked by communications. Networks have turned out to be ubiquitous. Correspondence networks, financial transaction networks, networks portraying physical systems, and social networks are all ending up noticeably progressively important in our everyday life. Regularly, we are interested in models of how nodes in the system influence each other (for example, who taints whom in an epidemiological system), models for predicting an attribute of intrigue in light of observed attributes of objects in the system. The technique of SVM is applied which will classify the data into malicious and non-malicious. In the previous study authors proposed various model for privacy preserving which are group based records, K-anonymity etc. In the existing models there are various problems like it affect data utilities, harm the data identifiers. In the research work, the hybrid approach has been designed to ensure data privacy which is based on attribute and data identifiers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom