z-logo
open-access-imgOpen Access
Evaluating the Efficiency of different Feature Sets on Brain Tumor Classification in MR Images
Author(s) -
N. Engy,
M. Nancy,
Walid AlAtabany
Publication year - 2018
Publication title -
international journal of computer applications
Language(s) - English
Resource type - Journals
ISSN - 0975-8887
DOI - 10.5120/ijca2018917008
Subject(s) - computer science , feature (linguistics) , artificial intelligence , pattern recognition (psychology) , philosophy , linguistics
In this paper, a study for evaluating the efficacy of different feature sets that used brain tumor classification is presented. Different features sets are extracted as shape, 1 order texture features (FOS), 2 order (GLCM, GLRLM), boundary features, and wavelet-based features. The brain tumors are extracted using the k-means clustering algorithm. Then different classifiers such as Artificial Neural Network (ANN), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) were used in the classification process. A set of 65 real and simulated (Flair modality) MRI images from multimodal brain tumor image segmentation benchmark (BRATS) organized by MICCAI 2012 challenge is used for performance evaluation. The overall segmentation results for the 65 volumes are 90.15±0.12. For the Feature sets efficacy step, the highest accuracy of 94.74% is achieved by the SVM when using the wavelet–based features. The lowest accuracy achieved by the three classifiers obtained when using the second order texture features..

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom