z-logo
open-access-imgOpen Access
Prototype of Clustering and Classification Model for Privacy Preservation using Single Vector Decomposition
Author(s) -
Richa Lodhi,
Anil Suryavanshi
Publication year - 2016
Publication title -
international journal of computer applications
Language(s) - English
Resource type - Journals
ISSN - 0975-8887
DOI - 10.5120/ijca2016908064
Subject(s) - computer science , cluster analysis , decomposition , data mining , information retrieval , artificial intelligence , biology , ecology
The single value decomposition technique divides the data of different parties during the process of privacy preservation. The process of single value decomposition implied in the form of clustering and classification. The combined process of clustering and classification called prototype mode for sharing privacy preservation. The utility of vector decomposition in this model is selection of data in different parties for the process of maintain the raw information. In this paper proposed a prototype model for privacy preservation and improved the efficiency of data utility and accuracy of data recovery during the process of privacy. The proposed model implements in MATLAB software and used some standard dataset for evaluation of performance. The proposed model is very efficient in compression of KPPDM model. General Terms Privacy preservation, Data mining, Vector Decomposition

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom