Brain Tumor Segmentation using Genetic Algorithm and FCM Clustering Approach
Author(s) -
Garima Garg,
Sonia Juneja
Publication year - 2012
Publication title -
international journal of computer applications
Language(s) - English
Resource type - Journals
ISSN - 0975-8887
DOI - 10.5120/7601-0331
Subject(s) - computer science , cluster analysis , segmentation , artificial intelligence , pattern recognition (psychology) , genetic algorithm , machine learning , data mining
Image processing is any type of signal processing in which we take any abnormal image of brain tumor and then produce an output which is extracted portion of tumor by applying genetic algorithm with fuzzy clustering means method. FCM is superior over different clustering approaches. This combined approach is used to improve segmentation efficiency and obtain higher value of true positive pixels belong to tumorous region. Genetic algorithm is a stochastic global optimization algorithm, their combination can prevent FCM being trapped in local optimum and give more better results in comparison to neural networks and CAD approaches.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom