A Hybrid Support Vector Machine Ensemble Model for Credit Scoring
Author(s) -
Ahmad Ghodselahi
Publication year - 2011
Publication title -
international journal of computer applications
Language(s) - English
Resource type - Journals
ISSN - 0975-8887
DOI - 10.5120/2220-2829
Subject(s) - computer science , support vector machine , machine learning , artificial intelligence , ensemble forecasting , cluster analysis , credit risk , ensemble learning , data mining , finance , economics
Credit risk is the most challenging risk to which financial institution are exposed. Credit scoring is the main analytical technique for credit risk assessment. In this paper a hybrid model for credit scoring is designed which applies ensemble learning for credit granting decisions. The hybrid model combines clustering and classification techniques. Ten Support Vector Machine (SVM) classifiers are utilized as the members of ensemble model. Since even a small improvement in credit scoring accuracy causes significant loss reduction, then the application of ensemble in hybrid model leads to better performance of classification. A real dataset is used to test the model performance. The test results shows that proposed hybrid SVM ensemble has better classification accuracy when compared with other methods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom