z-logo
open-access-imgOpen Access
Unsupervised Speaker Segmentation using Autoassociative Neural Network
Author(s) -
S. Jothilakshmi,
V. Ramalingam,
S. Palanivel
Publication year - 2010
Publication title -
international journal of computer applications
Language(s) - English
Resource type - Journals
ISSN - 0975-8887
DOI - 10.5120/167-293
Subject(s) - computer science , artificial neural network , segmentation , artificial intelligence , speech recognition , natural language processing
In this paper we propose an unsupervised approach to speaker segmentation using autoassociative neural network (AANN). Speaker segmentation aims at finding speaker change points in a speech signal which is an important preprocessing step to audio indexing, spoken document retrieval and multi speaker diarization. The method extracts the speaker specific information from the Mel frequency cepstral coefficients (MFCC). The speaker change points are detected using the distribution capturing ability of the AANN model. Experiments are carried out on different audio databases, and the method is capable of detecting speaker changes with short duration of speech in an unsupervised manner.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom