Zelflerende software detecteert opvallende transacties Onderzoek naar de mogelijkheden om concepten uit de kunstmatige intelligentie in te zetten voor analyse van financiële gegevens
Author(s) -
Vivian Blankers,
Thom Eijken,
Patrick Özer,
Quintra Rijnders
Publication year - 2011
Publication title -
maandblad voor accountancy en bedrijfseconomie
Language(s) - Swedish
Resource type - Journals
eISSN - 2543-1684
pISSN - 0924-6304
DOI - 10.5117/mab.85.15768
Subject(s) - art , humanities , theology , philosophy
Het in kaart brengen van opvallende transacties in het kader van de accountantscontrole wordt vaak gedaan vanuit een traditionele benadering van een kwalitatieve risicoanalyse en een kwantitatieve (data-)analyse gebaseerd op ervaringsregels. Hierbij worden risico-indicatoren die niet betrokken zijn in voornoemde kwalitatieve risico- en data-analyse buiten beschouwing gelaten. In dit artikel wordt aangetoond dat ‘unsupervised’ zelflerende software op effectieve en efficiënte wijze uitzonderingen op bestaande datastructuren in een grootboek in kaart brengt. De software vormt een aanvulling op het pallet van oplossingen dat kan worden ingezet in het kader van het voortdurend monitoren van de bedrijfsprocessen.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom