z-logo
open-access-imgOpen Access
POD & MLSM Application on DU96-W180 Wind Turbine Airfoil
Author(s) -
Amr M. Halawa,
Basman Elhadidi,
Shigeo Yoshida
Publication year - 2017
Publication title -
evergreen
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.378
H-Index - 11
eISSN - 2432-5953
pISSN - 2189-0420
DOI - 10.5109/1808451
Subject(s) - point of delivery , turbine , airfoil , wind power , marine engineering , environmental science , engineering , aerospace engineering , electrical engineering , biology , botany
In this study, the aim was to reduce the complexity of the costly non-linear unsteady partial differential equations governing the aerodynamic flows into a simpler lower-dimensional model. Modal decomposition method; namely Proper Orthogonal Decomposition (POD) was applied in conjunction with the Modified Linear Stochastic Measurement (MLSM) to achieve a reduced order model with high accuracy and low computational cost. The methods were applied to the surface pressure values of a DU96-W180 Wind Turbine Airfoil with emphasis on stall control application. It was found that using only three POD modes, most of the system energy (up to 99%) was captured where the reconstructed pressure distribution matched the CFD one obtained from OpenFOAM simulations. Besides, using only two pressure probes, one upstream and the other downstream, the surface pressure field was reconstructed with high accuracy. This application is important in reducing the computational time from several hours to just few seconds for applications involving recursive solution of the Navier-Stokes equations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom