Heat Transfer in a Microtube or Microchannel with Protrusions
Author(s) -
Muhammad M. Rahman,
Phaninder Injeti
Publication year - 2011
Publication title -
frontiers in heat and mass transfer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 18
ISSN - 2151-8629
DOI - 10.5098/hmt.v2.1.3003
Subject(s) - thermal fluids , microchannel , frontier , heat transfer , thermal , materials science , engineering physics , nanotechnology , mechanical engineering , mechanics , thermodynamics , engineering , political science , thermal resistance , physics , law
This paper presents the effects of protrusions on heat transfer in a microtube and in a two-dimensional microchannel of finite wall thickness. The effects of protrusion shape, size, and number were investigated. Calculations were done for incompressible flow of a Newtonian fluid with developing momentum and thermal boundary layers under uniform and discrete heating conditions. It was found that the local Nusselt number near a protrusion changes significantly with the variations of Reynolds number, height, width, and distance between protrusions, and the distribution of discrete heat sources. The results presented in the paper demonstrate that protrusions can be used advantageously for the enhancement of local heat transfer whereas the global performance may be enhanced or diminished based on the channel geometry.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom