DUAL SOLUTIONS FOR HEAT AND MASS TRANSFER IN MHD JEFFREY FLUID IN THE PRESENCE OF HOMOGENEOUS-HETEROGENEOUS REACTIONS
Author(s) -
J. Prakash,
C. S. K. Raju,
N. Sandeepb
Publication year - 2016
Publication title -
frontiers in heat and mass transfer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 18
ISSN - 2151-8629
DOI - 10.5098/hmt.7.14
Subject(s) - thermal fluids , frontier , homogeneous , mass transfer , magnetohydrodynamics , dual (grammatical number) , heat transfer , heat transfer fluid , thermal , thermodynamics , mechanics , materials science , physics , political science , law , heat transfer coefficient , philosophy , nuclear physics , linguistics , plasma
In this study, we analyzed the effects of nonlinear thermal radiation and induced magnetic field on steady two-dimensional incompressible flow of Jeffrey fluid flow past a stretching/shrinking surface in the presence of homogeneous-heterogeneous reactions. For physical relevance in this study we analyzed the behavior of homogeneous and heterogeneous profiles individually. The transformed governing equations with the help of similarity variables are solved numerically via Runge-Kutta and Newton’s method. We obtained better accuracy of the present results by differentiating with the existed published literature. The effect of pertinent parameters on velocity, induced magnetic field, temperature and concentration profiles along with the friction factor and local Nusselt number are presented with the help of graphs and tables. Results imply that the Deborah number have tendency to increase the heat transfer rate. Concentration profiles are positively influenced by the homogeneous-heterogeneous reactions, which assist to enlarge the concentration profiles.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom