z-logo
open-access-imgOpen Access
Revisiting astronomical crystalline forsterite in the UV to near-IR
Author(s) -
K. M. Pitman,
Anne M. Hofmeister,
A. K. Speck
Publication year - 2013
Publication title -
earth planets and space
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.835
H-Index - 74
eISSN - 1880-5981
pISSN - 1343-8832
DOI - 10.5047/eps.2012.05.009
Subject(s) - forsterite , olivine , silicate , radiative transfer , flux (metallurgy) , ultraviolet , spectral line , infrared , materials science , absorption (acoustics) , radiative flux , astrophysics , analytical chemistry (journal) , mineralogy , physics , chemistry , optics , astronomy , environmental chemistry , metallurgy
Optical functions (n and k) of cosmic dust species like forsterite (Mg2SiO4) are required at all wavelengths to quantify the temperature and amount of dust. Astronomers combine optical functions of forsterite and olivine in different ways, which will affect radiative transfer models. We investigated what recent updates to the ultraviolet-visible-near-infrared (UV-VIS-NIR) laboratory spectra of forsterite and the choice of forsterite n, k dataset will have on radiative transfer models. We measured the UV-VIS-NIR transmission spectra of synthetic forsterite, MgO, SiO2, olivine (Fo90), and meteoritic olivine (pallasite). We derived optical functions for these and compared the UV-IR behavior of our k, absorption cross-section 〈Cabs〉, and total flux to that of “astronomical silicate” and olivine. Laboratory-derived k is substantially lower than “astronomical silicate” k at λ ~ 0.2–5 µ m. In the IR, different laboratory n and k produce equivocal 〈Cabs〉, whereas total flux is different for “astronomical silicate” versus laboratory n, k. From 0.35–5 µ m, the choice of “forsterite” k values has the most effect on modeled quantities. For environments with significant UV flux, astronomers should use recent UV-VIS-NIR laboratory n, k.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom