On the ballooning instability of the coupled Alfvén and drift compressional modes
Author(s) -
D. Yu. Klimushkin,
P. N. Mager,
В. А. Пилипенко
Publication year - 2012
Publication title -
earth planets and space
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.835
H-Index - 74
eISSN - 1880-5981
pISSN - 1343-8832
DOI - 10.5047/eps.2012.04.002
Subject(s) - physics , instability , ballooning , diamagnetism , field line , two stream instability , magnetohydrodynamics , magnetic field , drift velocity , coupling (piping) , plasma , curvature , mechanics , quantum electrodynamics , classical mechanics , tokamak , quantum mechanics , mechanical engineering , geometry , mathematics , engineering
The paper examines the ballooning instability in gyrokinetic approximation taking into account the effects of finite-β, magnetic field line curvature, and diamagnetic drift. We used a simple model with a constant curvature of magnetic field lines which enabled us to obtain analytical results. The possible plasma oscillatory modes comprise the poloidal Alfvén and drift compressional modes, coupled due to the magnetic field line curvature and plasma inhomogeneity. The frequencies of these modes depend on the westward current value. As this value grows, the frequencies of these two branches approach to each other, and the branches are merged at some critical value of the current. Then an instability develops which is called the drift ballooning coupling instability. There are three major differences of the drift ballooning coupling instability from the ordinary MHD ballooning instability: (1) the drift ballooning coupling instability is not aperiodic, there is a real part of the oscillation frequency of the order of the drift frequency, (2) only the mode with the same direction of the azimuthal phase speed as the velocity of the ion diamagnetic drift can be unstable, (3) the instability threshold depends on the diamagnetic drift frequency.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom