Kinetic effects on ion escape at Mars and Venus: Hybrid modeling studies
Author(s) -
E. Kallio,
R. Järvinen
Publication year - 2012
Publication title -
earth planets and space
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.835
H-Index - 74
eISSN - 1880-5981
pISSN - 1343-8832
DOI - 10.5047/eps.2011.08.014
Subject(s) - venus , mars exploration program , gyroradius , kinetic energy , astrobiology , ion , planet , physics , atmospheric escape , astronomy , classical mechanics , quantum mechanics
Kinetic effects are anticipated to play a role at Mars and Venus when the escape of planetary ions is considered because of the large ion gyroradius compared with the size of the planets. In this paper we have used the HYB hybrid model to analyze the role of kinetic effects at these non-magnetized planets by varying the mass of ions in the simulation. The test runs suggest that kinetic effects should be taken into account when properties and formation of the planetary three dimensional plasma and electromagnetic field environment are studied.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom