z-logo
open-access-imgOpen Access
Static strain and stress changes in eastern Japan due to the 2011 off the Pacific coast of Tohoku Earthquake, as derived from GPS data
Author(s) -
Hiroaki Takahashi
Publication year - 2011
Publication title -
earth planets and space
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.835
H-Index - 74
eISSN - 1880-5981
pISSN - 1343-8832
DOI - 10.5047/eps.2011.06.049
Subject(s) - geology , seismology , strain partitioning , extensional definition , strain (injury) , stress field , deformation (meteorology) , global positioning system , tectonics , medicine , telecommunications , computer science , oceanography , physics , finite element method , thermodynamics
The 2011 M 9.0 Tohoku earthquake induced regional crustal deformation not only in the Japanese Islands but also in north-eastern Asia. Strain release due to mainshock faulting should cause strain redistribution in the overriding plates. The dense GPS network in Japan enables us to calculate co-seismic strain and stress changes from observed data. Strain is a more objective indicator than displacement because no reference frame is required. The co-seismic strain field clearly indicates island-scale strain redistribution. Huge extensional strain changes were concentrated in the southern Iwate and northern Miyagi regions, with a maximum value of 45 × 10−6, which might correspond to approximately 225 to 450 years of strain accumulation. This implies relatively large strain accumulation and release in these regions. Small strain decay was observed in the northernmost NiigataKobe tectonic zone and a possible anomalous Coulomb failure stress change was observed in the Mt. Fuji region. Earthquakes triggered in the above regions might be associated with these anomalies, and/or these non-uniform crustal deformations may reflect crustal heterogeneity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom