z-logo
open-access-imgOpen Access
Non-monochromatic whistler waves detected by Kaguya on the dayside surface of the moon
Author(s) -
Tomoko Nakagawa,
Futoshi Takahashi,
Hideo Tsunakawa,
Hidetoshi Shibuya,
Hisayoshi Shimizu,
Masaki Matsushima
Publication year - 2011
Publication title -
earth planets and space
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.835
H-Index - 74
eISSN - 1880-5981
pISSN - 1343-8832
DOI - 10.5047/eps.2010.01.005
Subject(s) - physics , magnetic field , polarization (electrochemistry) , monochromatic color , whistler , surface wave , computational physics , optics , geophysics , atomic physics , chemistry , quantum mechanics
Non-monochromatic fluctuations of the magnetic field over the frequency range of 0.03–10 Hz were detected by Kaguya at an altitude of 100 km above the lunar surface. The fluctuations were almost always observed on the solar side of the moon, irrespective of the local lunar crustal field. They were also detected just nightside of the terminator (SZA < 123°), but were absent around the center of the wake. The level of the fluctuation enhanced over the wide range from 0.03 to 10 Hz, with no clear peak frequency. The fluctuations had the compressional component, and the polarization was not clear. The fluctuations were supposed to be whistler waves generated by the protons reflected by the lunar surface. The reflected protons are scattered in various directions, resulting a wide range of distribution of the velocity component parallel to the magnetic field. It may account for the wide range of frequency as observed, through cyclotron resonance of the wave with the reflected ions, in which the resonant frequency depends on the velocity component parallel to the magnetic field. However, there is also the possibility that the waves were generated by some nonresonant process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom