Carbon Emissions during Wildland Fire on a North American Temperate Peatland
Author(s) -
Robert A. Mickler,
David P. Welch,
Andrew D. Bailey
Publication year - 2017
Publication title -
fire ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.809
H-Index - 29
ISSN - 1933-9747
DOI - 10.4996/fireecology.1301034
Subject(s) - peat , environmental science , vegetation (pathology) , boreal , biomass (ecology) , temperate climate , shrub , fire regime , litter , elevation (ballistics) , hydrology (agriculture) , ecosystem , ecology , geology , biology , medicine , geometry , mathematics , geotechnical engineering , pathology
Northern temperate zone (30° to 50° latitude) peatlands store a large proportion of the world’s terrestrial carbon (C) and are subject to high-intensity, stand-replacing wildfires characterized by flaming stage combustion of aboveground vegetation and long-duration smoldering stage combustion of organic soils. Coastal peatlands are a unique region in which long-duration wildfire soil combustion is responsible for the majority of total annual emissions from all wildfires in the North American coastal plain. We developed a new method and approach to estimate aboveground and belowground C emissions from a 2008 peatland wildfire by analyzing vegetation C losses from field surveys of biomass consumption from the fire and soil C losses derived from the Soil Survey Geographic Database, a digital elevation model derived from airborne optical remote-sensing technology and ground elevation surveys using a Global Navigation Satellite System receiver. The approach to estimate belowground C emissions employed pre-fire LI-DAR-derived elevation from ground return points coupled with post-fire survey-grade GPS elevation measurements from co-located ground return points. Aboveground C emission calculations were characterized for litter, shrub foliage and woody biomass, and tree foliage fractions in different vegetation classes, thereby providing detailed emissions sources. The estimate of wildland fire C emissions considered the contribution of hydrologic regime and land management to fire severity and peat burn depth. The peatland wildfire had a mean peat burn depth of 0.42 m and resulted in estimated belowground fire emissions of 9.16 Tg C and aboveground fire emissions of 0.31 Tg C, for total fire emissions of 9.47 Tg C (1 Tg = 1012 grams). The mean belowground C emissions were estimated at 544.43 t C ha−1, and the mean aboveground C emissions were 18.33 t C ha−1 (1 t = 106 grams).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom