Comparison between low-cost and traditional MEMS accelerometers: a case study from the M7.1 Darfield, New Zealand, aftershock deployment
Author(s) -
S. Elizabeth,
F. Jesse,
Anna Kaiser,
Bill Fry,
Angela Chung,
C. Christensen
Publication year - 2012
Publication title -
annals of geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 60
eISSN - 2037-416X
pISSN - 1593-5213
DOI - 10.4401/ag-5268
Subject(s) - software deployment , accelerometer , microelectromechanical systems , aftershock , geology , seismology , geodesy , computer science , materials science , nanotechnology , operating system
Recent advances in micro-electro-mechanical systems (MEMS) sensing and distributed computing techniques have enabled the development of low-cost, rapidly deployed dense seismic networks. The Quake-Catcher Network (QCN) uses triaxial MEMS accelerometers installed in homes and businesses to record moderate to large earthquakes. Real-time accelerations are monitored and information is transferred to a central server using open-source, distributed computing software installed on participating computers. Following the September 3, 2010, Mw 7.1 Darfield, New Zealand, earthquake, 192 QCN stations were installed in a dense array in the city of Christchurch and the surrounding region to record the on-going aftershock sequence. Here, we compare the ground motions recorded by QCN accelerometers with GeoNet strong-motion instruments to verify whether low-cost MEMS accelerometers can provide reliable ground-motion information in network-scale deployments. We find that observed PGA and PGV amplitudes and RMS scatter are comparable between the GeoNet and QCN observations. Closely spaced stations provide similar acceleration, velocity, and displacement time series and computed response spectra are also highly correlated, with correlation coefficients above 0.94
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom