z-logo
open-access-imgOpen Access
Tropical Pacific influences on the North Atlantic Thermohaline Circulation
Author(s) -
Mojib Latif
Publication year - 2009
Publication title -
annals of geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 60
eISSN - 2037-416X
pISSN - 1593-5213
DOI - 10.4401/ag-3392
Subject(s) - thermohaline circulation , climatology , shutdown of thermohaline circulation , forcing (mathematics) , environmental science , climate model , global warming , general circulation model , oceanography , tropics , tropical atlantic , greenhouse gas , latitude , north atlantic deep water , ocean current , climate change , greenhouse effect , sea surface temperature , atmospheric sciences , geology , geodesy , biology , fishery
Most global climate models simulate a weakening of the North Atlantic Thermohaline Circulation (THC) in response to enhanced greenhouse warming. Both surface warming and freshening in high latitudes, the so-called sinking region, contribute to the weakening of the THC. Some models simulate even a complete breakdown of the THC at sufficiently strong forcing. Here results from a state-of-the-art global climate model are presented that does not simulate a weakening of the THC in response to greenhouse warming. Large-scale air-sea interactions in the tropics, similar to those operating during present-day El Niños, lead to anomalously high salinities in the tropical Atlantic. These are advected into the sinking region, thereby increasing the surface density and compensating the effects of the local warming and freshening. The results of the model study are corroborated by the analysis of observations

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom