z-logo
open-access-imgOpen Access
Real-Time Scheduling for Preventing Information Leakage with Preemption Overheads
Author(s) -
Hyeongboo Baek,
J. LEE,
P. KIM,
Byungseok Kang
Publication year - 2017
Publication title -
advances in electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 23
eISSN - 1844-7600
pISSN - 1582-7445
DOI - 10.4316/aece.2017.02016
Subject(s) - preemption , computer science , scheduling (production processes) , leakage (economics) , real time computing , information leakage , distributed computing , embedded system , computer network , operating system , engineering , operations management , economics , macroeconomics
Real-time systems (RTS) are characterized by tasks executing in a timely manner to meet its deadlines as a real-time constraint. Most studies of RTS have focused on these criteria as primary design points. However, recent increases in security threats to various real-time systems have shown that enhanced security support must be included as an important design point, retro-fitting such support to existing systems as necessary. In this paper, we propose a new pre-flush technique referred to as flush task reservation for FP scheduling (FTR-FP) to conditionally sanitize the state of resources shared by real-time tasks by invoking a flush task (FT) in order to mitigate information leakage/corruption of real-time systems. FTR-FP extends existing works exploiting FTs to be applicable more general scheduling algorithms and security model. We also propose modifications to existing real-time scheduling algorithms to implement a pre-flush technique as a security constraint, and analysis technique to verify schedulability of the real-time scheduling. For better analytic capability, our analysis technique provides a count of the precise number of preemptions that a task experiences offline. Our evaluation results demonstrate that our proposed schedulability analysis improves the performance of existing scheduling algorithms in terms of schedulability and preemption cost

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom