z-logo
open-access-imgOpen Access
Comparative Thermal Analysis of the Space Station Freedom Photovoltaic Deployable Boom Structure Using Trasys, Nevada, and Sinda Programs
Author(s) -
Joseph F. Baumeister,
Duane Beach,
Sasan C. Armand
Publication year - 1989
Publication title -
sae technical papers on cd-rom/sae technical paper series
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.295
H-Index - 107
eISSN - 1083-4958
pISSN - 0148-7191
DOI - 10.4271/891563
Subject(s) - boom , photovoltaic system , aerospace engineering , thermal , space station freedom , thermal analysis , space (punctuation) , computer science , engineering , geology , electrical engineering , remote sensing , physics , meteorology , environmental engineering , operating system
The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling action within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom