z-logo
open-access-imgOpen Access
Propeller Modulation Effects on a Scanning-Beam Microwave Landing System
Author(s) -
Jack M. Pope,
William N. Staehle
Publication year - 1975
Publication title -
sae technical papers on cd-rom/sae technical paper series
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.295
H-Index - 107
eISSN - 1083-4958
pISSN - 0148-7191
DOI - 10.4271/750521
Subject(s) - microwave , modulation (music) , propeller , beam (structure) , optics , physics , acoustics , materials science , environmental science , engineering , telecommunications , marine engineering
An investigation to assess the modulation effects on microwave signals transmitted through rotating propeller blades. Interruption of the antenna line-of-sight signal by the rotating propeller causes a variation of path loss, which produces essentially an amplitude modulation of the received signal. This interruption or blockage effect is generally only partial because of edge diffraction around the particular interfering propeller blade. Signals reflected from the rotating propeller will also cause Doppler frequency shifts to be present in the received signals. A scanning beam microwave landing system (MLS) known as MODILS (modular instrument landing system) was used to process the received signals for display. The effects of propeller modulation were studied by varying the following parameters: (1) spacing between propeller and receiving antenna, (2) propeller dimensions, (3) propeller speed (rpm), (4) number of propeller blades, (5) system data rate, (6) receiver response time, and (7) receiver antenna aperture.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom