Topography Measurement for Monitoring Manufacturing Processes in Harsh Conditions
Author(s) -
Thomas Mueller,
Andreas Poesch,
Eduard Reithmeier
Publication year - 2016
Publication title -
engineering
Language(s) - English
Resource type - Journals
eISSN - 1947-3931
pISSN - 1947-394X
DOI - 10.4236/eng.2016.85026
Subject(s) - grinding , process engineering , mechanical engineering , process (computing) , manufacturing process , machine tool , system of measurement , computer science , automotive engineering , engineering , manufacturing engineering , materials science , physics , astronomy , composite material , operating system
High precision manufacturing, e.g. milling and grinding, which have manufacturing tolerances in the range of <10 μm require microscopic measurement techniques for the inspection of the manufactured components. These measurement techniques are very sensitive to cooling liquids and lubricants which are essential for many manufacturing processes. Therefore, the measurement of the components is usually conducted in separate and clean laboratories and not directly in the manufacturing machine. This approach has some major drawbacks, e.g. high time consumption and no possibility for online process monitoring. In this article, a novel concept for the integration of high precision optical topography measurement systems into the manufacturing machine is introduced and compared to other concepts. The introduced concept uses a reservoir with cooling liquid in which the measurement object is immersed during the measurement. Thereby, measurement disturbance by splashing cooling liquids and lubricants can effectively be avoided
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom