z-logo
open-access-imgOpen Access
Oral <i>Lactobacillus plantarum</i> NCIMB 8825 Inhibits Adhesion, Invasion and Metabolism of <i>Neisseria meningitidis</i> Serogroup B and Affords Anti-Inflammatory and Cytotoxic Protection to Nasopharyngeal Epithelial Cells
Author(s) -
Tezera Liku Bekele,
Page Keith,
Rhakimova Adelina,
Salisbury Vyvyan,
Victoria Davenport
Publication year - 2014
Publication title -
advances in microbiology
Language(s) - English
Resource type - Journals
eISSN - 2165-3410
pISSN - 2165-3402
DOI - 10.4236/aim.2014.42013
Subject(s) - lactobacillus plantarum , microbiology and biotechnology , biology , cytokine , tlr2 , lactobacillus rhamnosus , receptor , tlr4 , immunology , biochemistry , lactobacillus , lactic acid , bacteria , genetics , fermentation
In this study, we investigate the potential for oral Lactobacilli (LB) to afford innate protection against nasopharyngeal coloniser Neisseria meningitidis serogroup B (NmB), which causes the bulk of UK meningococcal disease. Oral isolates of L. plantarum, L. salivarious, L. casei, L. rhamnosus, L. gasseri and gut probiotic L. rhamnosus GG were assessed for their ability to suppress nasopharyngeal epithelial inflammatory responses to pathogenic NmB. The specificity of attenuation was examined using TLR 2 ligand, Pam3Cys, and early response cytokine IL1β; and the mechanism of attenuation was explored using heat-killed organisms and conditioned medium. Pro-inflammatory IL-6 and TNFα cytokine secretion was quantified by ELISA and associated cell death was quantified by PI staining and LDH release. NmB adhesion, invasion and metabolism were determined using standard gentamicin protection with viable counts, and bioluminescence, respectively. L. plantarum and L. salivarious suppressed IL-6 and TNFα secretions from NmB-infected epithelial cells. LB did not need to be alive and could suppress using secretions, which were independent of TLR2 or IL1β receptor signalling. L. plantarum, in particular, reduced NmB-induced necrotic cell death of epithelial monolayers. Like L. salivarious, it significantly inhibited NmB adhesion but uniquely L. plantarum abolished NmB invasion. Using bioluminescence as a reporter of pathogen metabolism, L. plantarum and its secretions were found to inhibit NmB metabolism during cell invasion assays. We conclude that oral L. plantarum and its secretions could be used to help reduce the burden of meningococcal disease by removing the intracellular nasopharyngeal reservoir of NmB.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom