z-logo
open-access-imgOpen Access
О нормальной аппроксимации для случайных полей с сильным перемешиванием
Author(s) -
Йонас Сунклодас,
J. Sunklodas
Publication year - 2007
Publication title -
теория вероятностей и ее применения
Language(s) - English
Resource type - Journals
eISSN - 2305-3151
pISSN - 0040-361X
DOI - 10.4213/tvp4
Subject(s) - computer science
Let ξn be a strongly mixing sequence of real random variables such that Eξn = 0. Write Sn = ξ1 + · · ·+ ξn and consider the normalized sums Zn = Sn/Bn, where B n = ES 2 n. Assume that a thrice differentiable function h : R → R satisfies supx∈R |h (x)| < ∞. We obtain optimal (in a sense) bounds for ∆n = |Eh(Zn)−Eh(N)|, where N is a standard normal random variable. Namely, we show that ∆n = O(n ), provided that the random variables ξn are bounded by a constant, B 2 n ≥ c0n, where c0 is a positive constant, and that the strong mixing coefficients α(r) satisfy P ∞ r=1 rα(r) < ∞. The results extend to the case of random fields {ξa, a ∈ Z }. To prove the results we apply a new method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom