z-logo
open-access-imgOpen Access
Функциональные модели несамосопряженных операторов, сильно непрерывные полугруппы и матричные веса Макенхаупта
Author(s) -
G. M. Gubreev,
Gennady Mychaylovich Gubreev,
Юрий Д Латушкин,
Yuri Latushkin
Publication year - 2011
Publication title -
известия российской академии наук серия математическая
Language(s) - English
Resource type - Journals
ISSN - 0373-2436
DOI - 10.4213/im4098
Subject(s) - psychology
We consider unbounded continuously invertible operators A, A0 on a Hilbert space H such that the operator A −1 − A−1 0 has finite rank. Assuming that σ(A0) = ∅ and the semigroup V+(t) := exp{iA0t}, t > 0, is of class C0, we state criteria under which the semigroups U±(t) := exp{±iAt}, t > 0, are also of class C0. We give applications to the theory of mean-periodic functions. The investigation is based on functional models of non-selfadjoint operators and on the technique of matrix Muckenhoupt weights.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom