z-logo
open-access-imgOpen Access
Selective Catalytic Reduction of NO over Cu-Mn/OMC Catalysts: Effect of Preparation Method
Author(s) -
Xinning Yu,
Feifei Cao,
Xinbo Zhu,
Xuecheng Zhu,
Xiang Gao,
Zhongyang Luo,
Kefa Cen
Publication year - 2016
Publication title -
aerosol and air quality research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.866
H-Index - 55
eISSN - 2071-1409
pISSN - 1680-8584
DOI - 10.4209/aaqr.2015.12.0693
Subject(s) - catalysis , x ray photoelectron spectroscopy , dispersion (optics) , selectivity , selective catalytic reduction , mesoporous material , evaporation , materials science , chemical engineering , chemistry , solvent , inorganic chemistry , organic chemistry , engineering , physics , optics , thermodynamics
Ordered mesoporous carbon (OMC) was used as support for CuOx and MnOx, and the effects of preparation method on selective catalytic reduction (SCR) of NO with NH3 were investigated. The Cu–Mn/OMC prepared by solvent evaporation-induced self-assembly method, named as self-assembly synthesis (S), exhibited higher NO conversion and N2 selectivity than the catalyst prepared by ultrasound-assisted impregnation (I) or mechanical mixing (M). The structural and surface properties of catalysts were characterized by various techniques. XRD and TEM results showed good dispersion of active phases on Cu–Mn/OMC(S). XPS analysis suggested that the surface of Cu–Mn/OMC(S) had the maximum amount of O–C=O groups and chemisorbed O. The strongest acidity and largest amount of oxidative species were further illustrated by NH3-TPD and H2-TPR profiles, which were consistent with the XPS results. Accordingly, these favorable properties may be the main reasons for the outstanding performance of Cu–Mn/OMC(S) in NH3-SCR reaction. Thus, self-assembly synthesis can be considered an effective method for the preparation of OMC–supported catalysts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom