z-logo
open-access-imgOpen Access
Photocatalytic Degradation of Phenol Using Nb-Loaded ZnO Nanoparticles
Author(s) -
Viruntachar Kruefu,
Hathaithip Ninsonti,
Natda Wetchakun,
Burapat Inceesungvorn,
Pusit Pookmanee,
Sukon Phanichphant
Publication year - 2012
Publication title -
engineering journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.246
H-Index - 20
ISSN - 0125-8281
DOI - 10.4186/ej.2012.16.3.91
Subject(s) - degradation (telecommunications) , photocatalysis , phenol , nanoparticle , materials science , chemical engineering , chemistry , nanotechnology , organic chemistry , catalysis , computer science , telecommunications , engineering
Niobium-doped Zinc Oxide nanoparticles (Nb-doped ZnO NPs) in the range of 20 and 40 nm were synthesized by Flame Spray Pyrolysis (FSP) technique. The crystalline phase, morphology and size of the nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. The specific surface area of the nanoparticles was measured by nitrogen adsorption (BET analysis). The pure ZnO and Nb-doped ZnO NPs were found to have the clear spherical, hexagonal and rod-like morphologies. To the best of our knowledge, the application of Nb-doped ZnO NPs as a photocatalyst has not been reported yet. In this study, the photocatalytic activities of pure ZnO and Nb-doped ZnO NPs were determined by studying the mineralization of phenol under UV light illumination. The results indicated that all Nb-doped ZnO NPs have better photocatalytic activity than the pure ZnO nanoparticles. It was found that, 0.50 mol% Nb-doped ZnO NPs exhibited the fastest response to the degradation of phenol.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom