z-logo
open-access-imgOpen Access
Copper and zinc, biological role and significance of copper/zinc imbalance
Author(s) -
Šuštar, Nataša,
Osredkar, Joško
Publication year - 2015
Publication title -
journal of clinical toxicology
Language(s) - English
DOI - 10.4172/2161-
Subject(s) - baker , cink , metabolizem kovin , encimi , toksikologija
The human body has an elaborate system for managing and regulating the amount of key trace metals circulating in blood and stored in cells. Nutrient metals from our diet are incorporated into blood if blood levels are depleted, transported into cells if cellular levels are inadequate, or excreted if blood and cell levels are sufficient or overloaded. When this system fails to function properly, abnormal levels and ratios of trace metals can develop. One of the most common trace-metal imbalances is elevated copper and depressed zinc. The ratio of copper to zinc is clinically more important than the concentration of either of these trace metals [1]. There are 2-4 grams of Zn distributed throughout the human body [2]. Most zinc is in the brain, muscle, bones, kidney and liver, with the highest concentrations in the prostate and parts of the eye [3]. It is the second most abundant transition metal in organisms after iron and it is the only metal which appears in all enzyme classes [2,4]. Copper is also a vital dietary nutrient, although only small amounts of the metal are needed for well-being [5]. Although copper is the third most abundant trace metal in the body [behind iron and zinc], the total amount of copper in the body is only 75-100 milligrams [6]. Copper is present in every tissue of the body, but is stored primarily in the liver, with fewer amounts found in the brain, heart, kidney, and muscles

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom