Existence and Uniqueness of a Regular Solution of the Cauchy- Dirichlet Problem for Doubly Nonlinear Parabolic Equations
Author(s) -
А. В. Иванов
Publication year - 1995
Publication title -
zeitschrift für analysis und ihre anwendungen
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.567
H-Index - 35
eISSN - 1661-4534
pISSN - 0232-2064
DOI - 10.4171/zaa/650
Subject(s) - uniqueness , degenerate energy levels , mathematics , mathematical analysis , cauchy problem , parabolic partial differential equation , nonlinear system , dirichlet problem , filtration (mathematics) , initial value problem , cauchy distribution , elliptic partial differential equation , dirichlet distribution , class (philosophy) , partial differential equation , boundary value problem , physics , pure mathematics , quantum mechanics , artificial intelligence , computer science
Existence and uniqueness of some Holder continuous generalized solution of CauchyDirichlet problem for a class of degenerate or singular quasilinear parabolic equations is established. Similar equations arise in the study of turbulent filtration of a gas or a fluid through porous media.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom