z-logo
open-access-imgOpen Access
Perfect numbers and finite groups
Author(s) -
Tom De Medts,
Attila Maróti
Publication year - 2013
Publication title -
rendiconti del seminario matematico della università di padova
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 24
eISSN - 0373-319X
pISSN - 0041-8994
DOI - 10.4171/rsmup/129-2
Subject(s) - group (periodic table) , finite group , mathematics , order (exchange) , combinatorics , discrete mathematics , pure mathematics , physics , finance , quantum mechanics , economics
A number is perfect if it is the sum of its proper divisors. We extend this notion to finite groups by calling a finite group a Leinster group if its order is equal to the sum of the orders of all proper normal subgroups of the group. We provide some general theory, we present examples of Leinster groups, and we prove some related results

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom