Regularity, local behavior and partial uniqueness for self-similar profiles of Smoluchowski’s coagulation equation
Author(s) -
José A. Cañizo,
Stéphane Mischler
Publication year - 2011
Publication title -
revista matemática iberoamericana
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.569
H-Index - 52
eISSN - 2235-0616
pISSN - 0213-2230
DOI - 10.4171/rmi/653
Subject(s) - uniqueness , coagulation , smoluchowski coagulation equation , mathematics , mathematical analysis , statistical physics , physics , psychology , psychiatry
We consider Smoluchowski's equation with a homogeneous kernel of the form $a(x,y) = x^\alpha y ^\beta + x^\beta y^\alpha$ with $-1 < \alpha \leq \beta < 1$ and $\lambda := \alpha + \beta \in (-1,1)$. We first show that self-similar solutions of this equation are infinitely differentiable and prove sharp results on the behavior of self-similar profiles at $y = 0$ in the case $\alpha < 0$. We also give some partial uniqueness results for self-similar profiles: in the case $\alpha = 0$ we prove that two profiles with the same mass and moment of order $\lambda$ are necessarily equal, while in the case $\alpha < 0$ we prove that two profiles with the same moments of order $\alpha$ and $\beta$, and which are asymptotic at $y = 0$, are equal. Our methods include a new representation of the coagulation operator, and estimates of its regularity using derivatives of fractional order.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom