Asymptotics of the integrated density of states for periodic elliptic pseudo-differential operators in dimension one
Author(s) -
Alexander V. Sobolev
Publication year - 2006
Publication title -
revista matemática iberoamericana
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.569
H-Index - 52
eISSN - 2235-0616
pISSN - 0213-2230
DOI - 10.4171/rmi/449
Subject(s) - dimension (graph theory) , mathematics , differential operator , differential (mechanical device) , elliptic operator , mathematical analysis , pure mathematics , physics , thermodynamics
We consider a periodic pseudo-differential operator on the real line, which is a lower-order perturbation of an elliptic operator with a homogeneous symbol and constant coefficients. It is proved that the density of states of such an operator admits a complete asymptotic expansion at large energies. A few first terms of this expansion are found in a closed form.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom