z-logo
open-access-imgOpen Access
Asymptotics of the integrated density of states for periodic elliptic pseudo-differential operators in dimension one
Author(s) -
Alexander V. Sobolev
Publication year - 2006
Publication title -
revista matemática iberoamericana
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.569
H-Index - 52
eISSN - 2235-0616
pISSN - 0213-2230
DOI - 10.4171/rmi/449
Subject(s) - dimension (graph theory) , mathematics , differential operator , differential (mechanical device) , elliptic operator , mathematical analysis , pure mathematics , physics , thermodynamics
We consider a periodic pseudo-differential operator on the real line, which is a lower-order perturbation of an elliptic operator with a homogeneous symbol and constant coefficients. It is proved that the density of states of such an operator admits a complete asymptotic expansion at large energies. A few first terms of this expansion are found in a closed form.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom