z-logo
open-access-imgOpen Access
Enriques diagrams, arbitrarily near points, and Hilbert schemes
Author(s) -
Steven L. Kleiman,
Ragni Piene,
Ilya Tyomkin
Publication year - 2011
Publication title -
rendiconti lincei matematica e applicazioni
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.824
H-Index - 28
eISSN - 1720-0768
pISSN - 1120-6330
DOI - 10.4171/rlm/608
Subject(s) - mathematics , hilbert space , pure mathematics , hilbert r tree , algebra over a field , rigged hilbert space , reproducing kernel hilbert space
Given a smooth family F/Y of geometrically irreducible surfaces, we study sequences of arbitrarily near T-points of F/Y; they generalize the traditional sequences of infinitely near points of a single smooth surface. We distinguish a special sort of these new sequences, the strict sequences. To each strict sequence, we associate an ordered unweighted Enriques diagram. We prove that the various sequences with a fixed diagram form a functor, and we represent it by a smooth Y-scheme.We equip this Y-scheme with a free action of the automorphism group of the diagram. We equip the diagram with weights, take the subgroup of those automorphisms preserving the weights, and form the corresponding quotient scheme. Our main theorem constructs a canonical universally injective map from this quotient scheme to the Hilbert scheme of F/Y; further, this map is an embedding in characteristic 0. However, in every positive characteristic, we give an example, in Appendix B, where the map is purely inseparable

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom