Configuration spaces of tori
Author(s) -
Yoel Feler
Publication year - 2007
Publication title -
rendiconti lincei matematica e applicazioni
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.824
H-Index - 28
eISSN - 1720-0768
pISSN - 1120-6330
DOI - 10.4171/rlm/486
Subject(s) - mathematics , torus , pure mathematics , algebra over a field , geometry
The configuration space C^n of unordered n-tuples of distinct points on atorus T^2 is a non-singular complex algebraic variety. We study holomorphicself-maps of C^n and prove that for n>4 any such map F either carries the wholeof C^n into an orbit of the diagonal Aut(T^2) action in C^n or is of the formF(x)=T(x)x for some holomorphic map T:C^n-->Aut(T^2). We also prove that forn>4 any endomorphism of the torus braid group B_n(T^2) with a non-abelian imagepreserves the pure torus braid group PB_n(T^2).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom