z-logo
open-access-imgOpen Access
Periodic solutions of Birkoff–Lewis type for the nonlinear wave equation
Author(s) -
Luca Biasco,
Laura Di Gregorio
Publication year - 2006
Publication title -
rendiconti lincei matematica e applicazioni
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.824
H-Index - 28
eISSN - 1720-0768
pISSN - 1120-6330
DOI - 10.4171/rlm/452
Subject(s) - mathematics , nonlinear system , type (biology) , mathematical analysis , physics , quantum mechanics , ecology , biology
We prove the existence of infinitely many periodic solutions accumulating to zero for the one–dimensional nonlinear wave equation (vibrating string equation). The periods accumulate to zero and are both rational and irrational multiples of the string length. 1. A Poincaré conjecture. The wave equation is an infinite dimensional hamiltonian system. The importance of periodic solutions for finite dimensional hamiltonian system was pointed out by Poincaré in [18]: “D’ailleurs, ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour ainsi dire, la seule brèche par où nous puissons essayer de pénétrer dans une place jusqu’ici réputée inabordable.” Although periodic solutions are “few” “en effet, il ya une probabilité nulle pour que les conditions initiales du mouvement soient précisément celles qui correspondent à une solutions périodique,” however Poincaré stressed their importance formulating the following conjecture: “...voici un fait que je n’ai pu démontrer rigoureusement, mais qui me parait pourtant très vraisemblable. Étant données des équations de la forme définie dans le n. 13 et une solution particulière quelconque de ces équations, one peut toujours trouver une solution périodique (dont la période peut, il est vrai, être très longue), telle que la différence entre les deux solutions soit aussi petite qu’on le veut, pendant un temps aussi long qu’on le veut.” This conjecture stimulates the systematic study of periodic solutions by Poincaré himself, Lyapunov, Birkhoff, Moser, Weinstein etc. In [19] a positive answer to the conjecture was given, but only in a generic sense (namely in the C–category of hamiltonian functions): the periodic orbits are dense on every compact and regular energy surface. On the other hand, for specific systems, the conjecture is still open (and far from being proved). As an intermediate step, one can look for periodic orbits accumulating onto invariant manifolds. Indeed it was proved that periodic orbits accumulate onto: 1. elliptic periodic orbits, by Birkhoff and Lewis in the thirties, see [10]; 2. maximal KAM tori, by Conley and Zehnder in the eighties, see [12]; 3. elliptic tori of every dimension, recently in [6]. 2000 Mathematics Subject Classification. Primary: 34C25, 35L05; Secondary: 37K50.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom