Anti-norms on Finite von Neumann Algebras
Author(s) -
Jean-Christophe Bourin,
Fumio Hiai
Publication year - 2015
Publication title -
publications of the research institute for mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.786
H-Index - 39
eISSN - 1663-4926
pISSN - 0034-5318
DOI - 10.4171/prims/153
Subject(s) - mathematics , affiliated operator , von neumann architecture , abelian von neumann algebra , pure mathematics , von neumann algebra , algebra over a field , jordan algebra , algebra representation
As the reversed version of usual symmetric norms, we introduce the notion of symmetric anti-norms $\|\cdot\|_!$ defined on the positive operators affiliated with a finite von Neumann algebra with a finite normal trace. Related to symmetric anti-norms, we develop majorization theory and superadditivity inequalities of the form $\|\psi(A+B)\|_!\ge\|\psi(A)\|_!+\|\psi(B)\|_!$ for a wide class of functions $\psi$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom