The Gauss–Bonnet theorem for noncommutative two tori with a general conformal structure
Author(s) -
Farzad Fathizadeh,
Masoud Khalkhali
Publication year - 2012
Publication title -
journal of noncommutative geometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.037
H-Index - 26
eISSN - 1661-6960
pISSN - 1661-6952
DOI - 10.4171/jncg/97
Subject(s) - noncommutative geometry , mathematics , conformal map , torus , riemann zeta function , invariant (physics) , laplace operator , pure mathematics , gauss , mathematical physics , combinatorics , mathematical analysis , physics , geometry , quantum mechanics
In this paper we give a proof of the Gauss-Bonnet theorem of Connes andTretkoff for noncommutative two tori $\mathbb{T}_{\theta}^2$ equipped with anarbitrary translation invariant complex structure. More precisely, we show thatfor any complex number $\tau$ in the upper half plane, representing theconformal class of a metric on $\mathbb{T}_{\theta}^2$, and a Weyl factor givenby a positive invertible element $k \in C^{\infty}(\mathbb{T}_{\theta}^2)$, thevalue at the origin, $\zeta (0)$, of the spectral zeta function of theLaplacian $\triangle'$ attached to $(\mathbb{T}_{\theta}^2, \tau, k)$ isindependent of $\tau$ and $k$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom