Enveloping algebras of Slodowy slices and the Joseph ideal
Author(s) -
Alexander Premet
Publication year - 2007
Publication title -
journal of the european mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.549
H-Index - 64
eISSN - 1435-9863
pISSN - 1435-9855
DOI - 10.4171/jems/86
Subject(s) - mathematics , codimension , lie algebra , algebraically closed field , nilpotent , combinatorics , ideal (ethics) , conjecture , algebraic group , subalgebra , pure mathematics , algebra over a field , algebraic number , philosophy , epistemology , mathematical analysis
We study general properties of quantisations of Slodowy slices and discuss indetail the case of the minimal nilpotent orbit. Associated varieties of relatedprimitive ideals of U(g) are determined, in the general case, and the deVos-van Driel conjecture on Verma modules for finite W-algebras is proved inthe minimal nilpotent case.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom