Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity
Author(s) -
Djairo G. de Figueiredo,
Jean–Pierre Gossez,
Pedro Ubilla
Publication year - 2006
Publication title -
journal of the european mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.549
H-Index - 64
eISSN - 1435-9863
pISSN - 1435-9855
DOI - 10.4171/jems/52
Subject(s) - mathematics , multiplicity (mathematics) , lambda , bounded function , omega , combinatorics , domain (mathematical analysis) , mountain pass theorem , mathematical analysis , nonlinear system , physics , quantum mechanics , optics
In this paper we study the existence, nonexistence and multiplicity of positive solutions for the family of problems $ -\Delta u = f_\lambda (x,u)$, $u \in H^1_0(\Omega)$, where $\Omega$ is a bounded domain in $\mathbb{R}^N$, $N\geq 3 $ and $\lambda>0$ is a parameter. The results include the well-known nonlinearities of the Ambrosetti-Brezis-Cerami type in a more general form, namely $ \lambda a (x)u^q + b(x) u^p $, where $0 \leq q<1
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom