A symmetry problem in the calculus of variations
Author(s) -
Graziano Crasta
Publication year - 2006
Publication title -
journal of the european mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.549
H-Index - 64
eISSN - 1435-9863
pISSN - 1435-9855
DOI - 10.4171/jems/41
Subject(s) - mathematics , sobolev space , ball (mathematics) , boundary (topology) , bounded function , class (philosophy) , open set , pure mathematics , symmetry (geometry) , mathematical analysis , geometry , artificial intelligence , computer science
We consider the integral functional \[ J(u) = \int_{\Omega} [f(|Du|) - u]\, dx\,, \qquad u\in\Wuu(\Omega), \] where $\Omega\subset\R^n$, $n\geq 2$, is a nonempty bounded connected open subset of $\R^n$ with smooth boundary, and $\R\ni s\mapsto f(|s|)$ is a convex, differentiable function. We prove that, if $J$ admits a minimizer in $\Wuu(\Omega)$ depending only on the distance from the boundary of $\Omega$, then $\Omega$ must be a ball
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom